Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Rev. ciênc. farm. básica apl ; 41: [14], 01/01/2020. tab, ilus, graf
Article in English | LILACS | ID: biblio-1128573

ABSTRACT

Neem tree (Azadirachta indica A. Juss. fam. Meliaceae) has been extensively employed to combat diverse pathologies. Moreover, it has been described that its leaf extract present anticarcinogenic action. Thus, the neem extract (NE) chemical and antioxidant properties was evaluated, and also, the capacity of two dermatological formulations incorporated with neem extract (F1 and F2) to avoid oxidative UVB-induced skin injury in hairless mice. NE constituents were investigated and free radical scavenging ability were determined by different methods in vitro. Skin from mice treated with F1 and F2 and submitted to UVB radiation were tested for different parameters of inflammation and oxidative injury. Results show that the NE polyphenol and flavonoid content were 135.30 and 37.12mg/g, respectively. High performance liquid chromatography (HPLC) results demonstrated the existence of azarachtin, rutin, ursolic acid and tannic acid. NE presented scavenging ability by ABTS radical, ferric-reducing antioxidant power (FRAP), inhibition of lipid peroxidation and iron chelation. In vivo, it was observed that mice treated with F1 and F2 showed amelioration of the inflammation by reducing UVB induced skin edema. However, only samples from animals treated with F1 had lower neutrophil recruitment (measured by myeloperoxidase activity), and returning the oxidative status to baseline levels in parameters such as reduced glutathione level, ferric reducing ability (FRAP), and scavenging of free radical (ABTS). Concluding, NE demonstrated a good antioxidant property in vitro, and the data suggest the use of NE added F1 to prevent skin damage caused by UVB irradiation.(AU)


Subject(s)
Animals , Male , Female , Mice , Ultraviolet Rays/adverse effects , Oxidative Stress/drug effects , Azadirachta , Antioxidants/radiation effects , Administration, Cutaneous , Chromatography, High Pressure Liquid/methods , Mice
2.
Biol. Res ; 52: 17, 2019. tab
Article in English | LILACS | ID: biblio-1011419

ABSTRACT

BACKGROUND: Prunella vulgaris L. has been an important medicinal plant for the treatment of thyroid gland malfunction and mastitis in China for over 2000 years. There is an urgent need to select effective wavelengths for greenhouse cultivation of P. vulgaris as light is a very important factor in P. vulgaris growth. Here, we described the effects of natural light (control) and UV solar exclusion on the morphological and physiological traits, secondary metabolites contents and antioxidant activities of P. vulgaris. RESULTS: The results showed that UV solar exclusion resulted in remarkable alterations to morphological and biomass traits; significantly reduced the chlorophyll a, chlorophyll b and total chlorophyll contents; significantly enhanced the ratio of chlorophyll a to b; and significantly increased the carotenoid and anthocyanin contents in P. vulgaris. UV solar exclusion significantly increased the catalase (CAT) and peroxidase (POD) activities, increased superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and slightly decreased the glutathione (GSH) content. UV solar exclusion significantly increased the soluble sugar and H2O2 contents and increased the soluble protein content but significantly decreased the proline content and slightly decreased the MDA content. The secondary metabolite contents (total phenolics, rosmarinic acid, caffeic acid, hyperoside, ursolic acid and oleanolic acid) and in vitro antioxidative properties (DPPH· and ABTS·+scavenging activities) were significantly increased in P. vulgaris spicas under UV solar exclusion. Additionally, the total polysaccharide and total flavonoids contents were slightly increased by UV solar exclusion. The salviaflaside content was significantly reduced by UV solar exclusion. CONCLUSION: Our study demonstrated that P. vulgaris activates several antioxidant defence systems against oxidative damage caused by UV solar exclusion.


Subject(s)
Photosynthesis/physiology , Prunella/metabolism , Anthocyanins/biosynthesis , Antioxidants/metabolism , Ultraviolet Rays , Prunella/radiation effects , Prunella/chemistry , Antioxidants/radiation effects
3.
Braz. j. biol ; 77(2): 332-339, Apr.-June 2017. tab
Article in English | LILACS | ID: biblio-888747

ABSTRACT

Abstract This work aimed to evaluate the thermal and photo stability of the antioxidant potential (AP) of the Spirulina platensis biomass. Thermal stability was established at 25ºC, 40ºC and 50ºC for 60 days, in the dark, protected from light. Photo stability was evaluated using UV (15 W, λ = 265 nm) and fluorescent (20 W, 0.16 A, power factor FP > 0.5, 50/60 Hz, 60 lm/w, 1200 lm) light for 90 days in capsules, glass and Petri dishes, at room temperature. The AP of the biomass in these conditions was determined at intervals (every 7 and 30 days in the studies of thermal and photo stability, respectively) using the induction of the oxidation of a lipid system by heat and aeration. In this lipid system, the biomass submitted to degradation was used as an antioxidant. The kinetics of the reaction was determined by the Arrhenius method. Thermal degradation was found to follow zero order kinetics, whereas photo degradation followed first order kinetics. The AP decreased 50% after 50 days at 25°C. At 40°C and 50°C, the AP decreased more than 50% after 35 and 21 days of exposition, respectively. The decrease of the AP of Spirulina was more sensible to UV and fluorescence light. After 30 days of exposition, the AP decreased more than 50% in all storage conditions tested. The antioxidant potential of Spirulina platensis is easily degraded when the biomass is exposed to heat and light, indicating the need for care to be taken in its storage.


Resumo Este trabalho objetivou avaliar a estabilidade térmica e a foto-estabilidade do potencial antioxidante (PA) da biomassa da Spirulina platensis. A estabilidade térmica foi avaliada a 25ºC, 40ºC e 50ºC por 60 dias. A foto-estabilidade foi avaliada usando luz UV (15 W, λ = 265 nm) e fluorescente (20 W, 0.16 A, fator de potência FP > 0.5, 50/60 Hz, 60 lm/w, 1200 lm) por 90 dias em cápsulas, vidro e placas de Petri. O PA da biomassa nessas condições foi determinado em intervalos de tempo (a cada 7 e 30 dias nos estudos de estabilidade térmica e foto-estabilidade, respectivamente), usando a indução da oxidação de um sistema lipídico por calor e aeração. Neste sistema lipídico, a biomassa submetida à degradação foi usada como antioxidante. A cinética da reação foi determinada pelo método de Arrhenius. A degradação térmica seguiu uma cinética de zero ordem, enquanto que a fotodegradação seguiu uma cinética de primeira ordem. O PA diminuiu 50% depois de 50 dias a 25°C. A 40°C e 50°C, o PA diminuiu mais de 50% depois de 35 e 21 dias de exposição, respectivamente. A diminuição do PA da Spirulina foi mais sensível à luz UV e fluorescente. Depois de 30 dias de exposição, o PA diminuiu mais de 50% em todas as condições de armazenamento testadas. O potencial antioxidante da Spirulina platensis é facilmente diminuído quando a biomassa é exposta ao calor e a luz, indicando a necessidade de cuidados durante seu armazenamento.


Subject(s)
Spirulina/chemistry , Hot Temperature , Light , Antioxidants/chemistry , Powders , Biomass , Antioxidants/radiation effects
SELECTION OF CITATIONS
SEARCH DETAIL